16,462 research outputs found

    Differential space-time block-coded OFDMA for frequency-selective fading channels

    Get PDF
    Combining differential Alamouti space-time block code (DASTBC) with orthogonal frequency-division multiple access (OFDMA), this paper introduces a multiuser/multirate transmission scheme, which allows full-rate and full-diversity noncoherent communications using two transmit antennas over frequency-selective fading channels. Compared with the existing differential space-time coded OFDM designs, our scheme imposes 10 restrictions on signal constellations, and thus can improve the spectral efficiency by exploiting efficient modulation techniques such as QAM, APSK etc. The main principles of our design are s follows: OFDMA eliminates multiuser interference, and converts multiuser environments to single-user ones; Space-time coding achieves performance improvement by exploiting space diversity available with multiple antennas, no matter whether channel state information is known to the receiver. System performance is evaluated both analytically and with simulations

    An effective ant-colony based routing algorithm for mobile ad-hoc network

    Get PDF
    An effective Ant-Colony based routing algorithm for mobile ad-hoc network is proposed in this paper. In this routing scheme, each path is marked by path grade, which is calculated from the combination of multiple constrained QoS parameters such as the time delay, packet loss rate and bandwidth, etc. packet routing is decided by the path grade and the queue buffer length of the node. The advantage of this scheme is that it can effectively improve the packet delivery ratio and reduce the end-to-end delay. The simulation results show that our proposed algorithm can improve the packet delivery ratio by 9%-22% and the end-to-end delay can be reduced by 14%-16% as compared with the conventional QAODV and ARA routing schemes

    Certain Adenylated Non-Coding RNAs, Including 5′ Leader Sequences of Primary MicroRNA Transcripts, Accumulate in Mouse Cells following Depletion of the RNA Helicase MTR4

    Get PDF
    RNA surveillance plays an important role in posttranscriptional regulation. Seminal work in this field has largely focused on yeast as a model system, whereas exploration of RNA surveillance in mammals is only recently begun. The increased transcriptional complexity of mammalian systems provides a wider array of targets for RNA surveillance, and, while many questions remain unanswered, emerging data suggest the nuclear RNA surveillance machinery exhibits increased complexity as well. We have used a small interfering RNA in mouse N2A cells to target the homolog of a yeast protein that functions in RNA surveillance (Mtr4p). We used high-throughput sequencing of polyadenylated RNAs (PA-seq) to quantify the effects of the mMtr4 knockdown (KD) on RNA surveillance. We demonstrate that overall abundance of polyadenylated protein coding mRNAs is not affected, but several targets of RNA surveillance predicted from work in yeast accumulate as adenylated RNAs in the mMtr4KD. microRNAs are an added layer of transcriptional complexity not found in yeast. After Drosha cleavage separates the pre-miRNA from the microRNA\u27s primary transcript, the byproducts of that transcript are generally thought to be degraded. We have identified the 5′ leading segments of pri-miRNAs as novel targets of mMtr4 dependent RNA surveillance
    • …
    corecore